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AhstrmL Self-avoiding walks with a curvaturedependent energy are studied with renor- 
malization group methods on some fractal lattices. Fixed p i n l s  mnrspnding UI univer- 
sal and non-universal behaviours are generally present. However initial mnditions of the 
renomalization group mumions cm pment non-universality. When univemlity holds 
the persistence length k found V, diverge much Easter than in the periodic lattice as the 
cuwature energy increases. 

The self-avoiding walk (SAW) problem is believed to catch all the essential features 
of real polymers in good solvent at least as far as their asymptotic behaviour is 
concerned [l, 21. SAWS with extra interactions (besides the excluded volume) describe 
various situations. Attractions between different parts of a SAW have been introduced 
to describe the Q-point tricritical behaviour and the collapsed phase (see (21 and 
reference therein). Closed SAWS in two dimensions with an unbalanced pressure have 
been studied as a model for two-dimensional vescicles [3]. 

Universality arguments make rather plausible that curvature energy on SAWS is 
irrelevant, the only effect of it being to modify the persistence length of the walk. 

Let us consider for example SAWS on a &dimensional (hyper)cubic lattice whose 
elementary steps joins nearest-neighbour lattice sites. Let k be the step fugacity and 

(figure 1). 
If c << -1, i.e. corners are very favourable, then SAWS become critical at the value 

k J c )  - e', corresponding to having a turn associated at each step. It is easy to see 
that similar walks are nothing other than very fuzzy SAWs (persistence length - 1 
in lattice units), and that a hypothetical renormalization group transformation would 
make Bern more 'smooth' at small scale. 

On the other hand, if c >> 1, corners become rather rare and the SAWS are made 
of rather long segments of length 1 ( c )  - persistence length, which increases as a 
function of c. This means that walks can be seen as new SAWs with elementaly steps 
of length 1 ( c ) ,  the number of which is reduced by a factor l ( c ) .  

jreduce(jj ~ n e r ~  asos;aie(j co mupie ut mnzcuci.ve righi angie 

Thus one expects that the average squared radius of gyration ( R 2 )  behaves like 

5 On leave of absence from Dipanimento di Fisica, Universita' di Bari and Sezione INFN di Bari, hri, 
Italy. 
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Figure 1. Example of the weight of the curvature; the weight here IS k’oe-rc,  

as k - k,(c) -  with the correlation length exponent v independent of t. Using the 
renormalization group approach of [4] we find (see also below) that l ( c )  I ef as 
c + 00 for all d > 1. 

IC is not known what could be the combined effect of a cumture energy cost for 
a SAW in a disorder environment. In some instances the environment forces the SAW 
to bend, constraining in this way the persistence length. Thus a modification to the 
scaling law (1) might be expected, with v a (not necessarily continuous) function of e. 

As a f is t  step in order to understand the role of the ‘disorder’, on a ‘rigid’ 
SAW it is useful to derive some exact results studying the problem on deterministic 
fractals. SAWS on deterministic and statistical fractals have been studied in [SI and [4] 
respectively. 

We will present three typical examples where the correlation length exponent U 
and the entropic exponent y are: both non-universal; one universal and the other 
non-universal; and finally both universal. In this last case we will show that the 
persistence length grows like de‘’ as c increases. We will also argue that non- 
universal asymptotic behaviour, even if always latent, might be unobservable due to 
initial conditions of renormalization group (RG) recursion equations that prevent the 
RG trajectories approaching new b e d  points. 

Renormalization group (RG) on deterministic fractal lattices was explained by 
Dhar [SI. A set of generating functionst for SAWS is introduced at the Nth iteration of 
the process which defines the construction of the fractal lattice. Recursion equations 
are then written for this set of generating functions which allow them to be calculated 
in terms of the same set of the previous iteration. The ‘physical’ parameters of the 
problem, k and p 5 e-‘ in this case, enter in the recursion equations as initial 
conditions and/or as free parameters. The generating functions one introduces can 
be seen as new physical parameters in terms of which recursion equations can be 
written. 

Let us illustrate the procedure in some detail for the simplest case of the branching 
Koch curve (BKC) [7], shown in figure 2. 

Since each time we triple the linear size the number of elementary units increases 
by five, its fractal dimension is 2 = log 5 /  log 3. 

Let aN( Iwl) be the number of SAWS joining the two ends i, j as shown in figure 3, 
at the stage N, after (wl steps; also let bN( lwl)  be the number of S A W  starting from 
one end and ending on an arbitrary site, and c N (  1 1 1 1 )  the number of coupled walks 

t which kinds of generating fundions belong lo the set depends not only on the fype of quantities one 
likes lo ralculate, but also on lhe requtrement that the recursion equations map the se1 inlo ilxlf. 



S4.IHs wilh CUwaNre energy on froctah 2155 

Figure 2. Rrst steps in the mnstmclion of the hanching Koch curve 

AN EN t N  

Figure I Generating funclions A N ,  EN, CN for the branching Koch curve as defined 
in the t a l .  

of total length IwI (figure 3). 

comers present in the walk. It is useful to define the generating functions: 
Each walk is weighted as klwlpc(w).  Here p = e-', and C ( w )  is the number of 

and a similar expression for C N ( k ) ,  the generating function for c,(lwl). 
Recursion equations for A and B are easily constructed: for example two types of 

graphs contribute to AN+l, corresponding to go through the shortest and the longest 
coarse-grained paths. n k m g  into account the contributions to the extra statistical 
weight coming from the bends occurring at the nodes where the Nth lattices meet in 
the construction of the ( N  + 1)th level iteration lattice, we get 

A,,, = A: + p3A4N. (4) 

The contributions to E N + ,  and CN+, are slightly more complicated, but easily 
obtainable: 

EN+* = B N [ l  t ( l + p ) A ~ + ( l + p + p ~ ) A k + ( p ~ + 2 1 1 ~ ) A 3 N 1 - ( p ' + 1 1 ~ ) A 4 N  

(5) 
CN+, = CN(3Ak +4p3AL]  + BL + 3p2A&(BL - A L )  + 2 p A N B ;  

+ 2A,(BL - A;) ~ P A ~ B N ( B N  - A N )  
+ 2 g A k B L  + 4p2A3N( BN - A,)' (6) 

where the negative contributions in (5) and (6) come from double counting of some 
graphs. 
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The initial conditions are: A, = k, B, = k ,  C, = 0. Since the recursion for A, 
k not mupled, it can be solved separately. The fixed p i n t  A ' ( p )  and the thermal 
eigenvalue AT(#)  are found from 

A"'(p)  + w ~ A * ~ ( ~ )  = 1 (7) 

and 

dAN+l  I = 3 + W ~ A * ~ ( ~ ) .  A,(#) = - 
d A N  A=A* 

The fact that the fixed point A * ( p )  and the thermal eigenvalue AT(p)  are explic- 
itly dependent on the Curvature parameter p, has as a consequence that all the critical 

(l), can be read off from (8) to be 
expnenn W;l! depend 0% i?. IS we!!. n.e e!?d-K!-e!!d dkt2n.. exp.;o.e.t defined h 

The case bl. = 0 corresponds to the infinitely rigid SAW and thus u ( 0 )  = 1 as one 
expects while v ( p  = 1) = 0.891 is the result of [7]. 

In this case, the critical value for the fugacity k c ( @ )  coincides with A' (p ) .  If 
we then let p B l , k c ( p )  << 1, such that pk,(p)  = 1, then we find from (5) that 
the SAW fractal dimension l/v(p) = log4/ log3 ,  coincides with the Koch fractal 
dimension and represents the most collapsed SAW on the BKC. 

Let f,(lwl) be the the average number of closed SAWS per site (i.e. aw = 0) 
of IwI steps, at the stage N .  Consider then its thermodynamic limit f(lw1) = 
Iim,+= fN(Iw1)/5'". Then we can consider the generating function (free energy) 

This is indeed the free energy for the SAW as it follows from the n + 0 limit of 
the n-vector model [SI. Assume that f(lw1) behaves like 

then pj the free energy F ( k j  has the behaviour 

where less singular terms have been omitted. 
It is easy to see! using the definitions of A,(k) ,  that 

A3 
F(k) = p3*. 

N=l 
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From (13) it follows that 

where we have used the fact that A N - l  with initial mndition A ,  = k is the same as 
A N - 2  with initial mndition A, = k3 + p3k4  (see (4)). 

Thus the free energy exponent as defined in (12) becomes: 

It is worth noticing that the hyperscaling relation du = 2 - a is verified V p  E 

The method of calculation of the entropy exponent y takes the same line. Assume 
that the average number of distinct SAWS of IwI steps at the stage N iS cN(lwl) .  
Then define c(lw1) = limN-, c , ( I ~ 1 ) / 5 ~  the average number of Iwl-step SAW 
per site. Since we expect 

[O,+m). 

then the susceptibility x ( k )  = ~ ~ w ~ = o c ( ~ w ~ ) k ~ w ~  for k - IC, is 

(16) 
k - k ;  

x ( k )  - ( k c  - k ) - 7 .  

Using the definitions of A, B and C it is easy to obtain [5] 

1 tm 
X ( k ) =  p [ ( 2 + 5 p ) B k - 1 + ( 1  + 2 p + 5 p 2 ) A ~ - 1 B $ - 1  

N = l  

+ (2p2+33 /13)AZN-~BZN-~+3p3C~-~Aa- - l  -2(P2+P3)B~-1AZN-1 

- ~ / L ~ A ~ - ~ I .  (17) 

Linearizing (4j iii iiie ~ciiiiry of the ?,xed poiiii one has 8 ,  = XN6,-,, where 
6, = A' - A ,  > 0.  This will hold approximately for N E ( N o ,  N), where N o ,  
for 6, 1, is constant and N - M as So - 0; N can be defined such that 
6~ = Xg6, = 6 << 1, i.e. 

Then for No < N < N we have A N  - A ' ( p )  and B, - [ D ( p ) l N  where 

D ( p )  = 1 t (1  + p ) A ' ( p )  + ( 1  + P + ~ ~ ) A ' ~ ( c 1 )  + (CL* +2&4%) (19) 

while for N > N, A ,  - 0 and B, .., Efi  due to the mndition k -+ k ; ( p ) .  
Under this mndition we a n  approximate the sum in (17) with its maximum term, 
thus leading to 
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yielding the susceptibility exponent 

A Giacometfi and A Marifan 

In a similar way, for the y, exponent associated with the divergence of the 
susceptibility defined considering only walks leaving one edge of the unit at the stage 
N ,  we obtain 

The same considerations given above for y ( p )  apply, and 

A summary of all the exponents are given in table 1, while the behaviour of the 
exponents a(fi),u(p),y(p),yt(p) as function of p is shown in figure lya) and (b). 

1 00 

- a 0.80 TI ....-.........-... ------- :::\TI ----------- ._.._......._.... 

- 
U 0.60 ,,' 0.99 
U c 
m 

a - 0.40 0.66 - 
0.20 0.33 

0 2.00 4.00 6.00 8.00 (0.00 0 2.00 4.00 6 00 8.00 10.00 

P P 

Figure 4 khaviour of (0) ~ ( p )  (dotted curve). and u ( p )  (full CUNe) and (6) ~ ( p )  
(full curve), and yl(p) (dolled a w e )  as a funclion of lhe curvature p in ule case of 
the branched Koch curve (BKC). 

Ibbk l. Summary lable for the various lattices studied in the WtL n e  non-univerull 
(pdependent) aponenu are given in the m t  in equations (9), (14), (21) and (23) for 
Ihe BKC, and in equations (2QH26c) for ule HBA. 

Model " (I 1 1 1  
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It is worth noticing that a scaling relation relating the surface and the bulk 
exponents holds. Indeed from the above equations we have 

r(p) = 2Y,(P) + 4 P )  - 2 (24) 

for all p. 
In this simple example non-universality comes from the p-dependence of the 

recursion equation (4). In the next example recursion equations can be introduced 
without p-dependence. Nevertheless entropic exponents will be non-universal. 

Let us consider a fractal bearing only reflection symmetry introduced by 
Havlin and Ben-Avraham (HBA) [9], shown in figure 5(a); its fractal dimension 
is d = log3/log2. In this case we need 10 different generating functions 
{ A N , B C ) ,  B$) ,CN,  D,,E!$), E g ) ,  F N , G N ,  H N )  whose definitions are shown 

figure 6; m.c initial ~~cri;tio,ns zre. { a ~ o  = pp, ~ 1 1 )  L., E!') U n - , - U  c- = 
k ( i  + p k ) ~  - r~(i  + p ) , ~ ( ' )  0 - - E o  ('1 - - F~ = G, = H ,  = 01. The recursions for 

nient redefinitionof thevariables is {X, = B g ) + p B E ) ,  YN = B g ) + p B c ) ,  2, = 
PAN}. 

A N ,  B, (1) , BN ?'I- are coupled together but decoupled from C,, . . . , H,. A conve- 

io) ibl  

Figure 5. First steps in the construction of (a) the Havlin-Ben-Avraham model and (b) 
the 3-simplex model. 

In these variables the recursions assume the simple form: 

XN+1 = xk + yi ZN 

y... ,"+, . = --," X . . Y . .  - , v  + --," X . . Y . .  - 1 Y  -,v z.. 

zN+I  = XLZN + zk 

(25a) 

(25h) 

(25c) 

with initial condition {X, = 12, Yo = p k ,  Z, = p'k ' ) .  The only non-trivial fixed 
p o i n t s a r e P = ( X ' = O , Y ' = O , Z ' = l ) ,  S = ( X ' = A , Y ' = A , Z * = A )  
where A = (6- 1)/2,  and a line of k e d  points L = (X' = l , Y * , Z '  = 0) 
where here Y' is arbitrary. The iine of tixed points L has two marginal direction 
AI,' = 1 and one repulsive direction A, = 2 independent of the free parameter Y'! 
Although S does have an attractive eigendirection corresponding to the eigenvalues 
A, = 2 A - 1 = 0 . 2 3 6  ... (theothertwobeingA, = 2 A =  1.23 . . . ,  A , = 2 + A 2  = 
2.38 . .  .), it does not intersect the initial condition surface, and thus is never involved 
in the scaling regime. At the tixed point P, AI,' = 0 and A, = 2. 

At least for p 5 2 we verified that iterating the recursions equations (25a)-(25c), 
there exists a critical value of the fugacity k c ( p )  leading (XN,YN,ZN) to one of 
the points L as N - CO. Therefore one gets U = 1 since A, = 2 on that line. For 
larger values of p it is not completely clear from the numerical investigation of the 
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L 
A N  

H 
N 

G 
N 

Figure d Generating functions for the Havlin-Ben-Avraham fracml. In the p p h s  I?$' 
and E$' (i = 1,2), the dashed line joins he wmer to the enremum site on the 
right. In the case i = 1 and i = 2 paths arrive at the wmer horizontally and venially 
respectively. 

recursion equations, if criticality is regulated by the k e d  point P or by one of the Ls 
since the RG trajectory, as one approaches k c ( p ) ,  first goes through a neighbourhood 
of P and then through one of the Ls. We have also calculated perturbatively the 
surface of attraction of the lixed point P and of the set { L ) .  Within the perturbative 
scheme we have evidence that the surface of the initial conditions does not intersect 
the domain of attraction of P thus leading to a critical behaviour regulated by the 
fixed points in the set { L). 

This model, without curvature, has been investigated by Rammal el a1 [7] who 
nevertheless considered the v exponent only. Their m e  is a particular case of the 
present one when p = 1, that is X, = Y,,VN 0. Although we introduced 
one more degree of freedom, thus enlarging the parameter space with an attractive 
eigendirection, we found the same result In this respect then, the effect of the 
curvature i irrelevant. 

Using the same method as before, we also calculated the exponents a, 7 , ~ ~ :  while 
a turns out to be independent of curvature thus leaving the hyperscaling relation 
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unchanged, the susceptibility exponents y and y1 do not!t Their values are 

The values yI and y; correspond to the susceptibility of the extreme and the 

A relation similar to (24) holds true, namely 
mrner respectively. 

Y b )  = 71 + -fib) + a - 2 (27) 

Thus in this second example, in contrast with the previous one, only part of the 
exponents are non-universal. 

The next case, Le. the 3-simplex [SI (figure 5(b)) ,  is more similar to the regular 
lattice problem where universality holds, but is nevertheless instructive since it allows 
definition and calculation, within the RG framework, of the persistence length in the 
small p limit This model has the three-fold symmetry characteristic also of the 
Sierpinski gasket family, and it is believed to belong to the same class of universality. 
Notice that, although it has the same fractal dimension d = log 3/ log 2 of the HBA 
lattice, it does not belong to the same class of universality [7]. For the calculation of 
the exponent U, the generating functions { A C ” ,  A$”), A$”), A t 2 ’ }  we need are 
shown in figure 7. 

The redefinition 

X N -  -A<ls11  N + pA$”’ 

+ pLA(rfl”) (m) 
+ p A C Z )  (W 

y - A < 2 , 1 )  
N -  N 

V - A(’. ’ )  
N -  N 

(2W z N -  - A(2,2)  + p A F 2 ’  

along with the initial conditions { X ,  = kz + p 3 k 3 ,  Yo = p 2 k 3  + p k z ,  V, = p 2 k 3  + 
p k z ,  Z, = p k 3  + p 2 k z ] ,  allow the reduction of the problem to consider the 3D map 
{ X N , Y N ,  Z N )  only, being VN = YN VN 2 0.  The recursions are 

XN+I = X i  + Y i Z N  (2% 

t calculation of the ys uponenls wuld  rrquirr the invoduclion of WO generating functions of lyps 
A: one invoking palhs going through the “er of figure 6 and Ihe other lhe rcmaining paths. This 
complication h o w e r  does not change lhc m u l l  lor the uponenu. 
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( 1 . 1 )  

AN 

( I ,2) 
AN 

d2.2' 
N 

Plgurc 7. Gcnerating functions for the 3simplex fractal. Only [he graphs necessary for 
the alculalion of Y are rrported. Paths join lhe lefl 10 the neht "er. A$" means 
that the len mmer is !cached with a lhoriwnlal (vcrticnl) step for i = 1 (2) .  llle index 
j refen in Ihr same way lo the right comer. 

Notice that only the recursion for Z is different from the HBA case, beside the 
initial conditions. Now we find again a symmetric fixed point S = (X' = A, Y' = 
A,Z' = A) with A = (6- 1) /2  with eigenvalues (A ,  = O,A,  = 2A - 1,A, = 
2 + A' = 2.38.. .), and a line of fixed p i n t s  L = (X' = 1,Y' = O,Z*), with 
eigenvalues ( A ,  = 2,Az = 1,A, = 1 + Z') and Z' is arbitrary. Due to the 
initial condition surface, the flow is toward the symmetric fixed p i n t  S, yielding 
A, = 2 + A' and thus Y = log 3/ log(2 + AZ) = 0.7986.. .. This model, without 
curvature, was studied by Dhar [SI, whose recursions can be regained from (2%)- 
(2%) and the initial conditions, when 41 = 1, (i.e. X ,  = YN = ZN,V/N > 0). 
Therefore, again, we find a result independent of the curvature, which coincides with 
the p = 1 solution. The calculation of the entropic exponents of y takes the same 
line as in [SI. In contrast with the previous case we find now that the y and y, are 
universal. Thus the line of k e d  points, L, in this case does not play any role since 
the initial condition surface does not intersect its domain of attraction. 

It is interesting to see for this particular case, where universality holds, what is the 
eiien oi the inhomogeneous environment in the iimit oi very rigid chain, Le. p - 0. 
Specifically we wish to evaluate the singular behaviour of the persistence length l ( p )  
as defined in (1). When p is very small, the starting point (X,,Y,,Z,) is near the 
k e d  point (1 ,0 ,0 )  of the infinitely rigid chain. The smaller p is, the more the 
RG trajectory stays around that fixed point before approaching the symmetric fixed 
point S. Since we are interested in the critical behaviour, one has to start on the 
critical surface, which in this case is the domain of attraction of S and contains points 
arbitrarily closed to ( l , O ,  0), and then determines how many recursions are needed 
to leave a small neighbourhood of ( l , O , O ) .  Let us call no(p) this number which 
will also be of the order of the number of recursions needed to approach S. The 
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persistence length is then proportional to bn0(J’) where b is the rescaling factor, equal 
to 2 in the present case. To leading order the recursions near ( l , O ,  0) and on the 
critical surface are 

with initial conditions Z, - Yo - p - 0. One finds easily that n o ( p )  - p-’ and thus 

Using the exact result of [4] concerning the stiff-to-isotropic crossover exponent, 
the above analysis lead to 

GL) - w - l  (32) 

for d-dimensional hypercubic lattice. Thus (31) suggests that, when universality holds, 
the persistence length for very rigid SAWS on fractals is much larger than the one on 
the regular lattices. 

In summary, we have presented an analytical investigation of the effect of the 
curvature on a SAW which is taking place on a fractal structure. Although we found 
that in some instances a non-universal behaviour may occur, we showed that in the 
framework of the deterministic fractals, there is no general rule and a non-universal 
behaviour may or may not occur. It is however extremely important that non-universal 
behaviour is always present. Indeed in all three typical examples we have presented, 
when universal behaviour occurs, it is only due to the particular initial conditions, 
while non-universal behaviour is always latent. Furthermore if the end-to-end distance 
exponent U is universal, then our calculations indicate that the persistence length is 
much larger than the one in the regular lattice when curvature energy does not favour 
corners. Further work will be necessary in the future, to see the effect of curvature 
energy on SAWS on statistical fractals. 
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Nore added in proof. Alter this paper was accepted for publication, we became aware of some related 
work. I n  [lo] biased SAWS with stepstep interaction are studied on the 4-simpler: IatIicF. In [ll] biased 
SAWS are investigated on the 3-simplex, and the relations (29aH29c) are derived independently. 
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